BÀI TẬP GIẢI TÍCH II
HÀM NHIỀU BIẾN SỐ

Phép tính vi phân hàm nhiều biến, tích phân bội, tích phân đường, tích phân mặt, phương trình vi phân.
1. Tìm tập xác định của hàm số
 a) \(u = x + \sqrt{y} \)
 b) \(u = \sqrt{1 - x^2} + \sqrt{1 - y^2} \)
 c) \(u = \sqrt{x^2 + y^2} - 1 \)
 d) \(u = \ln xy \)
2. Tìm giới hạn của hàm số
 a) \(u = \frac{x^2 - y^2}{x^2 + y^2} \) khi \((x; y) \to (0; 0) \)
 b) \(u = \frac{xy^2}{x^2 + y^4} \) khi \((x; y) \to (0; 0) \)
 c) \(u = \left(\frac{xy}{x^2 + y^2} \right)^3 \) khi \((x; y) \to (+\infty; +\infty) \)
 d) \(u = (x + y) \sin \frac{1}{xy} \) khi \((x; y) \to (0; 0) \)
 e) \(u = (x^2 + y^2)^{(x+y)} \) khi \((x; y) \to (0; 0) \)
 f) \(u = \frac{\ln(x + e^y)}{x^2 + y^2} \) khi \((x; y) \to (0; 0) \)
 g) \(u = (x^2 + y^2)^{(x+y)} \) khi \((x; y) \to (+\infty; +\infty) \)
 h) \(u = \frac{\sin xy}{x} \) khi \((x, y) \to (0; 3) \)
3. Xét tính liên tục của các hàm số
 a) \(u = \begin{cases} e^{-1/x^2+y^2} & \text{khi } xy \neq 0 \\ 0 & \text{khi } xy = 0 \end{cases} \)
 b) \(u = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{khi } (x, y) \neq (0, 0) \\ 0 & \text{khi } (x, y) = (0, 0) \end{cases} \)
4. Tính các đạo hàm riêng của các hàm số
 a) \(u = \ln(x + \sqrt{x^2 + y^2}) \)
 b) \(u = x^3 \)
 c) \(u = e^{x\sqrt{x+y}} \)
 d) \(u = e^{\cos x-xy} \)
 e) \(u = \arctan(x + y^2) \)
5. Tính các đạo hàm riêng của hàm số tại \(O(0; 0) \)
 a) \(u = \begin{cases} \frac{x^3 + 2y^3}{x^2 + y^2} & \text{khi } (x; y) \neq (0; 0) \\ 0 & \text{khi } (x; y) = (0; 0) \end{cases} \)
 b) \(u = \begin{cases} (x + ye^{x-y}) & \text{khi } (x; y) \neq (0; 0) \\ 0 & \text{khi } (x; y) = (0; 0) \end{cases} \)
6. Tìm vi phân toàn phần của các hàm số
 a) \(u = x + 2y^2 - 3xyz \)
 b) \(u = \frac{xy}{x + 3y} \)
 c) \(u = \arcsin \frac{x}{y} \)
 d) \(u = \ln(x + y^2) \)
7. Kiểm tra xem hàm số \(u = \frac{1}{\sqrt[3]{x^3 + y^3}} \) có khả vi tại \(O(0; 0) \) hay không?
8. Sử dụng vi phân toàn phần để tính gần đúng
 a) \(\ln(\sqrt[3]{1.03} + \sqrt[3]{0.981}) \)
 b) \(\arctan(\frac{1.01}{0.99}) \)
 c) \(\sqrt[3]{1.023} + 1.97^3 \)
9. Tính đạo hàm, đạo hàm riêng của các hàm số xác định bởi phương trình
 a) \(xe^y + ye^x - e^{3y} = 0 \)
 b) \((x^2 + y^2)^2 = 3x^2 y - y^3 \)
 c) \(x + y + z = e^z \)
 d) \(xe^x + y^2 e^x - ze^{3y} = 0 \)
 e) \(xe^x + yz - ze^{3y} = 0 \) tại điểm \((1; 1) \)
10. Tính các đạo hàm riêng cấp hai
 a) \(u = \ln(x + \sqrt{x + y^2}) \)
 b) \(u = x^3 \ln(x + y) \)
 c) \(u = e^x \ln y + \sin y \ln x \)
 d) \(u = x^4 + y^4 - xy^3 \)
11. Cho \(f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2} \) khi \((x, y) \neq (0; 0) \) và \(f(0; 0) = 0 \). Tính đạo hàm riêng \(f_{xy}(0; 0) \) và \(f_{yx}(0; 0) \). Chi rằng \(f_{xy}(0; 0) \neq f_{yx}(0; 0) \).
12. Tính vi phân cấp hai của hàm số
a) \(u = x^4 + 3xy^2 - y^3 \)

b) \(u = \sqrt{x^2 + y^2 + z^2} \), chứng minh \(d^2u \geq 0 \).

c) \(u = x^2 + y^2 - 3z^3 + xy + 3xz \) tại điểm \(M(1;1;1) \), tìm ma trận của dạng toán phương \(d^2u(M) \) với các biến \(dx, dy, dz \).

13. Khai triển hàm số thành chuỗi Maclaurin đến vi phân cấp ba

a) \(u = e^x \sin y \)
b) \(y = \ln(1 + x + y) \)
c) \(u = \sin(x^2 + y^3) \)

14. Chứng minh

a) \(yz' + xz'' + 0 = 0 \) với \(z = f(x - y^2) \) và \(f(t) \) là hàm khả vi.

b) \(xz'' + yz' - 2z = 0 \) với \(z = (xy)^3 \times x + y \)

c) \(z'' + z'' = 0 \) với \(z = \ln(x^2 + y^2) \)

d) \(z'' = 3z'' (z'', x) = 0 \) với \(z = y, f(x, y) \) và \(f(t) \) có đạo hàm cấp hai liên tục

15. Tìm hàm \(z = z(x, y) \) thỏa mãn

a) \(z_x = 2 + 4ye^x \) \(z_y = 3 + 4xe^y \), \(z(0;1) = 0 \)

b) \(z_x = x^2 - 2xy^2 + 3 \) \(z_y = y^2 - 2x^2 y + 3 \)

c) \(z_x = 2x^2 y + 2 \) \(z_y = x^4 - 30xy^2 \), \(z(0;0) = 1 \), \(z(1;1) = -2 \)

16. Tính đạo theo hướng của vector \(\vec{v} \) tại điểm \(M \)

a) \(u = \sqrt{x^2 + y^2}, \ M(1;1), \vec{v} = (3;4) \)

b) \(u = xy^2z^3, \ M(1;2;3), \vec{v} = (1;2;2\sqrt{5}) \)

17. Tìm cực trị của hàm số

a) \(u = x^3 + 3xy^2 - 30x - 18y \)

b) \(u = 4(x - y) - x^2 - y^2 \)

c) \(u = x + y - xe^y \)

d) \(u = x^3 + 3xy^2 - 15x - 12y \)

e) \(u = x^4 + y^4 - x^2 - 2xy - y^2 \)

f) \(u = xy \ln(x^2 + y^2) \)

g) \(u = x^2 + xy + y^2 + x - y + 1 \)

h) \(u = 8x - \frac{1}{4} + x^4 + y^2(1 - x^2) \)

i) \(u = x^3 + y^3 - 3xy \)

j) \(u = x^4 + y^4 + 3(x - y)^2 \)

k) \(u = x^2 + y^2 + 3z^2 - 2x + 8y - 6z \)

l) \(u = x^3 + 3y^2 - z^2 + 12y + 8z + 2 \)

m) \(u = x^3 + y^2 + z^2 + 12xy + 2z \)

18. Tìm cực trị có điều kiện của các hàm số

a) \(u = x^2 - y^2 \) với \(x^2 + y^2 = 1 \)

b) \(u = x + y^2 \) với \(xy - y^3 + 3 = 0 \)

c) \(u = x^2 + 12xy + 2y^2 \) với \(4x^2 + y^2 = 25 \)

d) \(u = x + 3y + y^2 \) với \(x^2 + y^2 - xy = 3 \)

e) \(u = \cos^2 x + \cos^2 y \) với \(x - y = \) \(\frac{\pi}{4} \)

f) \(u = x - y^2 + 2z \) \(x + y = 1 \)

h) \(u = xz \) với \(x^2 + y^2 + z^2 = 1 \)

i) \(u = x + y + z \) với \(x^2 + y^2 + z^2 = 1 \)

19. Tìm giá trị lớn nhất, nhỏ nhất của hàm số trong miền tương ứng

a) \(u = x + y \) trong miền \(x^2 + y^2 \leq 25 \)

b) \(u = x^2 + y^2 \) trong miền \(\frac{x^2}{4} + \frac{y^2}{9} \leq 1 \)

c) \(u = x^2 + xy + 3z^2 \) trong miền \(0 \leq x \leq 0, 0 \leq y \leq 3 \)

d) \(u = 3xy - 2x^2 - 2y^2 \) trong miền \(D = \{(x, y) : x^2 + y^2 \leq 9\} \)

e) \(u = x^2 - xy + y^2 + 2x \) trong miền \(x^2 - y^2 \leq 0 \)

f) \(u = x^2 - xy + y^2 \) trong miền \(|x| + |y| \leq 1 \)

f) \(u = x + y + z \) trong miền \(x^2 + y^2 \leq z \leq 1 \)

20. Viết phương trình tiếp tuyến của đường cong

a) \(y^3 + 4xy - 5y + x^3 - 12 = 0 \) tại điểm \(M(1;2) \)

b) \(x + (x + y)e^{x^2} - y^3 = 0 \) tại điểm \(M(0;1) \)

c) \(x = 2t^2, y = 3t, z = e^{t-1} \) tại điểm \(M(2;3;1) \), viết phương trình tiếp tuyến và pháp diện.
21. Tìm tiếp diện và pháp tuyến của mặt cong
 a) \(x^2 + 3y^2 - 2z^2 = 0 \) tại điểm \(M(1;1;\sqrt{2}) \)
 b) \(xy - z = 0 \) tại điểm \(M(1;1;1) \)

Chương 2
TÍCH PHẢN BỘI

1. Tính các tích phân
 a. \(I = \iint_D (x^2 + xy) \, dx \, dy \) với D giới hạn bởi \(y = x, y = 2x, x = 2 \) \((\text{Đs} \ I = 10) \)
 b. \(I = \iint_D xy \, dx \, dy \) với D giới hạn bởi \(x - y + 4 = 0, x^2 = 2y \) \((\text{Đs} \ I = 90) \)
 c. \(I = \iint_D \frac{xy}{x^2 + y^2} \, dx \, dy \) với D là tam giác có các đỉnh là O(0,0), A(3,3), B(3,0). \((\text{Đs} \ I = \frac{9 \ln 2}{4}) \)
 d. \(I = \iint_D |\cos(x + y)| \, dx \, dy \) với D xác định bởi \(D = \{0 \leq x \leq \pi, 0 \leq y \leq \pi - x\} \). \((\text{Đs} \ I = \pi) \)
 e. \(I = \iint_D \frac{x}{x^2 + y^2} \, dx \, dy \) với D giới hạn bởi \(y = \frac{x^2}{2}, y = x \) \((\text{Đs} \ I = \ln 2) \)
 f. \(I = \iint_D (x^2 + y) \, dx \, dy \) với D giới hạn bởi \(y = x^2, x = y^2 \) \((\text{Đs} \ I = \frac{33}{140}) \)

2. Đổi thứ tự lấy tích phân
 a. \(I = \int_0^1 \int_{\sqrt{y-y^2}}^{\sqrt{y+y^2}} f(x,y) \, dx \, dy \) \((\text{Đs} \ I = \frac{1}{2} \left[\int_0^{\sqrt{\frac{\pi}{3}}} f(x,y) \, dy \right]_0^{\sqrt{\frac{\pi}{3}}} + \int_0^1 \int_0^{\sqrt{y+y^2}} f(x,y) \, dx \, dy) \)
 b. \(I = \int_0^1 \int_{\sqrt{y-y^2}}^{\sqrt{y+y^2}} f(x,y) \, dy \, dx \) \((\text{Đs} \ I = \int_0^1 \int_0^{\sqrt{\frac{\pi}{3}}} f(x,y) \, dy \, dx + \int_0^1 \int_{\sqrt{y-y^2}}^{\sqrt{y+y^2}} f(x,y) \, dy \, dx) \)
 c. \(I = \int_0^1 \int_{\sqrt{y-y^2}}^{\sqrt{y-y^2}} f(x,y) \, dx \, dy \) \((\text{Đs} \ I = \int_0^1 \int_0^{\sqrt{\frac{\pi}{3}}} f(x,y) \, dx \, dy + \int_0^1 \int_{\sqrt{y-y^2}}^{\sqrt{y+y^2}} f(x,y) \, dx \, dy) \)

3. Đổi biến để tính tích phân
 a. \(I = \iint_D dxdy \) với D giới hạn bởi \(y = 1 - x, y = 2 - x, y = 2x - 1, y = 2x - 3 \) \((\text{Đ/s} \ I = \frac{2}{3}) \)
 b. \(I = \iint_D x \, dxdy \) với D xác định bởi \(x \leq y \leq x + 3, -2x + 1 \leq y \leq -2x + 5 \) \((\text{ĐS} \ I = 2) \)
 c. \(I = \iint_D (x + y)^2 - (x - y)^2 \, dxdy \) với D giới hạn bởi \(x + y = 1, x - y = 1, x + y = 3, x - y = -1 \) \((\text{Đs} \ I = \frac{20}{3}) \)
 d. \(I = \iint_D (4x - 3 - x^2 - y^2) \, dxdy \) với D giới hạn bởi \(x^2 + y^2 - 4x + 3 = 0 \) \((\text{Đs} \ I = \frac{\pi}{2}) \)
 e. \(I = \iint_D \ln(1 + x^2 + y^2) \, dxdy \) với D xác định bởi \(x^2 + y^2 \leq 1, x,y \geq 0 \) \((\text{Đs} \ I = \frac{\pi}{2} [2 \ln 2 - 1]) \)
 f. \(I = \iint_D (4 - x^2 - y^2) e^{4-x^2-y^2} \, dxdy \) với D xác định bởi \(1 \leq x^2 + y^2 \leq 4 \)
g. \[I = \iint_D xy \, dxdy \] với D là nửa trên của hình tròn \((x-2)^2 + y^2 \leq 4\)
(Ds \(I = -\frac{32}{3} \))

h. \[I = \iint_D \frac{dxdy}{\sqrt{4-x^2-y^2}} \] với D xác định bởi \(x^2 + y^2 \leq 2y, x \leq y\)
(Ds \(I = \frac{3}{2} \pi - 4 + \sqrt{2} \))

k. \[I = \iint_D \left(\frac{y^2}{x^2} + xy + x + y \right) \, dxdy \] với D xác định bởi \(1 \leq x^2 + y^2 \leq 2x\)
(Ds \(I = \frac{4\pi}{3} + \frac{\sqrt{3}}{12} \))

l. \[I = \iint_D (x+1)\sin \sqrt{x^2+y^2} \, dxdy \] với D xác định bởi \(\pi^2 \leq x^2 + y^2 \leq 4\pi^2\)
(Ds \(I = -6\pi^2 \))

m. \[I = \iint_D \sqrt{x^2 + y^2} \, dxdy \] với D là miền giới hạn bởi

i) \[\begin{cases}
 x^2 + y^2 = a^2 \\
 x^2 + y^2 = 4a^2, a > 0
\end{cases} \]
(Ds \(I = \frac{14\pi a^3}{3} \))

ii) Đường hai cánh \(r = a \sin 2\varphi, a > 0\)
(Ds \(I = \frac{4a^3}{9} \))

n. \[I = \iint_D \sin \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} \, dxdy \] với D giới hạn bởi \(x^2 + y^2 = \pi^2, x^2 + y^2 = \frac{\pi^2}{4} \)

4. Tính diện tích hình phẳng giới hạn bởi
 a. \(y^2 = x, y = 2x - x^2\)
 (Ds \(S = \frac{\pi(b^2-a^2)}{4} \))

 b. \(r = a \cos \varphi, r = b \cos \varphi, b > a > 0\)
 (Ds \(S = \frac{3\pi a^2}{2} \))

 c. \(r = a(1 + \cos \varphi), a > 0\)
 (Ds \(S = \frac{3\sqrt{3} - \pi}{3} a^2 \)).

 d. \(r^2 = 2a^2 \cos \varphi, r = a\) ứng với phần \(r \geq a\).
 (Ds \(S = \frac{3\pi a^2}{4} \))

 e. \(y = 0\) và một nhịp của đường cycloid \(x = a(t - \sin t), y = a(1 - \cos t), 0 \leq t \leq 2\pi, a > 0\)
 (Ds \(S = 3\pi a^2 \))

 f. \((x^2 + y^2)^2 = a^2(x^2 - y^2)\) \(a > 0\)
 (Ds \(S = a^2 \))

 g. \(x^{2/3} + y^{2/3} = a^{2/3}, a > 0\)
 (Ds \(S = \frac{3\pi a^2}{8} \))

 h. \(r = a \sin 2\varphi\) \(a > 0\)

5. Tính diện tích của phần mặt:
 a. \(z = x^2 + y^2\) nằm trong mặt trục \(x^2 + y^2 = 1\)
 (Ds \(S = \frac{x^2}{a^2} + \frac{y^2}{b^2} \) nằm dưới mặt \(z = 1\))

 c. \(z = \frac{x^2}{a} + \frac{y^2}{b}\) nằm trong mặt \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) với \(a, b > 0\)

 d. \(x^2 + y^2 + z^2 = a^2\) nằm trong mặt \((x^2 + y^2)^2 = a^2(x^2 - y^2)\) \(a > 0\)

 e. \(z^2 = x^2 + y^2\) nằm trong hình trục \(x^2 + y^2 \leq 1\)

6. Tính thể tích:
 a. Phân hình nón \(z^2 \geq x^2 + y^2\) nằm trong mặt trục \(x^2 + y^2 = 1\)

 b. Vật thể giới hạn bởi hai mặt \(x^2 + y^2 + z^2 = 2z, x^2 + y^2 = z^2\) lấy phần \(z \geq \sqrt{x^2 + y^2}\)
 (Ds \(V = \pi \))
c. Vật thể giới hạn bởi $x^2 + y^2 + z^2 = a^2$ và mặt $(x^2 + y^2)^2 = a^2(x^2 - y^2)$ $a > 0$

7. Xác định trọng tâm của bản phẳng đồng chất giới hạn bởi các đường
 a. $y^2 = 4x + 4$ và $y^2 = -2x + 4$
 b. $\frac{x^2}{25} + \frac{y^2}{9} = 1$ và $\frac{x}{5} + \frac{y}{3} = 1$
 c. $y^2 = x$ và $x^2 = y$
 d. $x = a(1 + \cos \varphi)$

8. Tính các tích phân
 a. $I = \iiint_V \sqrt{x^2 + y^2} zdxdydz$ với V giới hạn bởi $x^2 + y^2 = z, z = 1$ (Ds $I = \frac{4\pi}{21}$)
 b. $I = \iiint_V xy\sqrt{z}dxdydz$ với V giới hạn bởi $z = 0, z = y, y = x^2, y = 1$ (Ds $I = \frac{8}{189}$)
 c. $I = \iiint_V x^2dxdydz$ với V giới hạn bởi $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (Ds $I = \frac{4\pi a^3 bc}{15}$)
 d. $I = \iiint_V |xyz|dxdydz$ với V giới hạn bởi $x^2 + y^2 = z, z = 4$ (Ds $I = 32$)
 e. $I = \iiint_V z^2dxdydz$ với V xác định bởi $x^2 + y^2 + z^2 \leq 4, x^2 + y^2 + z^2 \leq 4$ (Ds $I = \frac{59\pi}{15}$)
 f. $I = \iiint_V \sqrt{x^2 + y^2}dxdydz$ với V xác định bởi $x^2 + y^2 + z^2 \leq 1, x^2 + y^2 \leq z^2, z \geq 0$ (Ds $I = \frac{\pi^2 - 2\pi}{16}$)
 g. $I = \iiint_V zdxdydz$ với V xác định bởi $0 \leq x \leq \frac{1}{4}, x \leq y \leq 2x, 0 \leq z \leq \sqrt{1 - x^2 - y^2}$ (I = $\frac{43}{3072}$)
 h. $I = \iiint_V z\sqrt{x^2 - y^2}dxdydz$ với V giới hạn bởi $x^2 + y^2 = 2x, z = 0, z = a > 0$ (Ds $I = \frac{16a^2}{9}$)
 i. $I = \iiint_V \sqrt{x^2 + y^2 + z^2}dxdydz$ với V là miền $x^2 + y^2 + z^2 \leq x$ (Ds $I = \frac{\pi}{10}$)
 j. $I = \iiint_V (x^2 + y^2)dxdydz$ với V giới hạn bởi $x^2 + y^2 = 2z, z = 2$ (Ds $I = \frac{16\pi}{3}$)
 k. $I = \iiint_V \sqrt{x^2 + z^2}dxdydz$ với V giới hạn bởi $y = \sqrt{x^2 + z^2}, y = \sqrt{1 - x^2 - z^2}$ (I = $\frac{\pi^2 - 2\pi}{16}$)
 l. $I = \iiint_V (x^2 + y^2 + z^2)dxdydz$ với V giới hạn bởi $3(x^2 + y^2) + z^2 = 3a^2, a > 0$
 m. $I = \iiint_V \sqrt{x^2 + y^2 + z^2}dxdydz$ với V là miền $x^2 + y^2 + \left(z - \frac{1}{2}\right)^2 \leq \frac{1}{4}$
 n. $I = \iiint_V (x^2 + y^2)dxdydz$ với V là miền $a^2 \leq x^2 + y^2 + z^2 \leq b^2, z \geq 0$ (Ds $I = \frac{4\pi}{15}(b^2 - a^2)$)
 o. $I = \iiint_V \sqrt{1 - x^2 - y^2}dxdydz$ với V giới hạn bởi $z = \sqrt{x^2 + y^2}, z = a, 0 < a < 1$
 p. $I = \iiint_V \sqrt{x^2 + y^2 + z^2}dxdydz$ với V giới hạn bởi $x^2 + y^2 + z^2 = z$ (Ds $I = \frac{\pi}{10}$)
q. \(I = \iiint_V (x^2 + y^2 + z^2)\,dx\,dy\,dz \) với \(V \) là miền \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1 \)

r. \(I = \iiint_V z^2\,dx\,dy\,dz \) với \(V \) là miền \(x^2 + y^2 + z^2 \leq 4 \) \(\quad \text{(Đs } I = \frac{128\pi}{15} \text{)} \)

s. \(I = \iiint_V (xy + yz + xz)\,dx\,dy\,dz \) với \(V \) là miền \(x^2 + y^2 + z^2 \leq 4 \)

t. \(I = \iiint_V y\,dx\,dy\,dz \) với \(V \) giới hạn bởi \(y = \sqrt{x^2 + z^2} \), \(y = a > 0 \)

9. Hãy tính tích phân sau bằng cách chuyển sang

a. \(I = \int_0^a \int_0^{\sqrt{a^2-x^2}} \int_0^x z\sqrt{x^2+y^2}\,dz\,dy\,dx \) hệ tọa độ trư \(\quad \text{(Đ/s } I = \frac{8a^2}{9} \text{)} \)

b. \(I = \int_0^1 \int_0^{\sqrt{x^2-y^2}} \int_0^y z^2\,dz\,dy\,dx \) hệ tọa độ cầu

10. Tính thể tích vật thể giới hạn bởi

a. \(\begin{cases} x^2 + y^2 \leq 4 \\ x^2 + y^2 + z^2 \leq 1 \end{cases} \)

b. \(\begin{cases} z = 2(x^2 + y^2) \\ x^2 + y^2 + z^2 = 4 \end{cases} \)

c. \(\begin{cases} x^2 + y^2 + z^2 = 1 \\ x+y+z = 3 \end{cases} \)

d. \(\begin{cases} x^2 + y^2 + z^2 = 4 \\ x+2y-z = 1 \end{cases} \)

e. \(\begin{cases} x^2 + y^2 + z^2 = 1 \\ x+4y+z = 2 \end{cases} \)

11. Xác định trọng tâm của vật thể đồng chất giới hạn bởi

a. \(x^2 + y^2 = 2az, x^2 + y^2 + z^2 = 3a^2, z \geq 0, a > 0 \)

b. \(x+y = 1, z = x^2 + y^2, x = 0, y = 0, z = 0 \)

Chương3

TÍCH PHÂN DƯỠNG VÀ TÍCH PHÂN MẶT

1. Tính các tích phân dương loại I

a. \(I = \int_C xy\,d\ell \) với \(C \) là đường cong \(x = t, y = \frac{t^2}{2}, z = \frac{t^3}{3}, 0 \leq t \leq 1 \)

b. \(I = \int_C x^2\,d\ell \) và \(J = \int_C (3x^2 + \frac{y^2}{2})\,d\ell \) với \(C \) là đường cong \(x+y+z = a^2 \)

c. \(I = \int_C (x+2y)\,d\ell \) với \(C \) là đường cong \(x+y+z = a^2 \)

d. \(I = \int_C \sqrt{2y}\,d\ell \) với \(C \) là đường cong \(x = t, y = \frac{t^2}{2}, z = \frac{t^3}{3}, 0 \leq t \leq 1 \)

e. \(I = \int_C xy\,d\ell \) với \(C \) là cung elip \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) nằm trong góc \(x, y \geq 0 \)

f. \(I = \int_C xy\,d\ell \) với \(C \) là đường cong \(x = a \cos t, y = b \sin t, z = ct, 0 \leq t \leq \frac{\pi}{2} \)

2. Tính khối lượng dương cong
a) $y = \frac{a}{2} \left(e^{x} + e^{-x} \right), 0 \leq x \leq a$ biết khối lượng riêng là $\rho(x, y) = \frac{1}{y}$

b) $x = a \cos t, y = a \sin t, z = bt, 0 \leq t \leq 2\pi$ biết khối lượng riêng là $\rho(x, y, z) = z^{2}$

3. Tìm chiều dài và trọng tâm của các đường đồng chất
 a) $x = a(t - \sin t), y = a(1 - \cos t), 0 \leq t \leq 2\pi$
 b) $x = a \cos t, y = b \sin t, z = ct, 0 \leq t \leq \pi$

4. Tính tích phân đường loại II
 a) $I = \int_{\Gamma} (x^{2} - 2xy)dx + (y^{2} - 2xy)dy$ với Γ là đường $y = x^{2}$ nội $A(-1;1)$ và $B(1;1)$.
 b) $I = \int_{\Gamma} (x + y)dx + (x - y)dy$ với Γ là đường elip $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$, lấy hướng dương.
 c) $I = \int_{(\Gamma: x=1, y=0)} xdy + ydx$
 d) $I = \int_{(\Gamma: x=1, y=0)} \frac{xdx + ydy}{\sqrt{x^{2} + y^{2}}}$

 e) $I = \int_{AB} (xy - 1)dx + x^{2}ydy$ AB là đường $x^{2} + \frac{y^{2}}{4} = 1$ nội $A(1;0)$ và $B(0;2)$
 f) $I = \int_{C} (xy + x + y)dx + (xy + x - y)dy$ với C: $x^{2} + y^{2} = 2x$. Tính trực tiếp và sử dụng công thức Green
 g) $I = \int_{AB} x^{2}dx + y^{2}dy$ với AB là đường tròn $x^{2} + y^{2} = 2x$ nội $A(0;0)$ và $B(2;0)$.
 h) $I = \int_{\Gamma} 2(x^{2} + y^{2})dx + (x + y)^{2}dy$ với Γ là tam giác ABC trong đồ $A(1;1), B(2;2), C(1;3)$.
 i) $I = \int_{AB} (x^{2} + y \cos xy)dx + (\frac{x^{3}}{3} + xy^{2} - x + x \cos xy)dy$ với AB là cung tròn $x^{2} + y^{2} = 4$ và $A(-2;0), B(2;0)$.
 j) $I = \int_{(x+1)^{2}+(y+1)^{2}=1} \sqrt{x^{2} + y^{2}}dx + y \left[xy + \ln(x + \sqrt{x^{2} + y^{2}}) \right]dy$
 k) $I = \int_{x^{2}+y^{2}=1} (xy^{4} + x^{3} + y \cos xy)dx + \left(\frac{x^{3}}{3} + xy^{2} - x + x \cos xy \right)dy$
 l) $I = \int_{x^{2}+y^{2}=4} (xy + 3x + 2y)dx + \left(y^{2} - 2x - \frac{x^{2}}{2} \right)dy$
 m) $I = \int_{x^{2}+y^{2}=4} (xy + x + y)dx + (xy + x - y)dy$
 n) $I = \int_{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}=1} (-x^{2}y)dx + x^{2}dy$ và n’ $\int_{c} \frac{xdy - ydx}{x^{2} + y^{2}}$ với C là đường cong kim đơn không qua $O(0;0)$
 o) $I = \int_{(\Gamma: x=1, y=0)} e^{x+y}(1 + x + y)dx + (1 - x - y)dy$
 p) $I = \int_{C} xy^{2}dx + yz^{2}dy - zx^{2}dz$ trong đồ C là đoạn thẳng nội $O(0,0), B(-2;4;5)$.
q) Văn tinh tích phân trong p) với C là đường tròn trong không gian cho bởi \[\begin{align*} x^2 + y^2 + z^2 &= 45, \\
2x + y &= 0 \end{align*} \]

r) \(I = \int_C zdx + xdy + ydz \) trong đó C là đường \(\begin{align*} x^2 + y^2 + z^2 &= 1, \\
x + z &= 1 \end{align*} \)

s) \(I = \int_C (y^2 + z^2)dx + (z^2 + x^2)dy + (x^2 + y^2)dz \) với C là giao tuyến của các mặt \(x^2 + y^2 + z^2 = 4y \) và \(x^2 + y^2 = 2y, z > 0 \). Tích phân lấy theo chiều ngược chiều kim đồng hồ nếu nhìn từ phía \(z > 0 \).

t) \(I = \int_C (y + z)dx + (z + x)dy + (x + y)dz \) với C là giao tuyến của các mặt \(x^2 + y^2 + z^2 = 9 \). Tích phân lấy theo chiều ngược chiều kim đồng hồ nếu nhìn từ phía \(x > 0 \).

u) \(I = \int_C -3ydx + 3dy + zdz \) với C là đường tròn \(x^2 + y^2 = 1 \). Tích phân lấy theo chiều ngược chiều kim dòng hồ nếu nhìn từ phía \(z > 0 \).

v) \(I = \int_C x^2dx + y^2dy + z^2dz \) với C là đường cong \(x^2 + y^2 + z^2 = 4 \). Tích phân lấy theo chiều ngược chiều kim dòng hồ khi nhìn từ gốc tọa độ O.

5. Tính tích phân mặt loại I

a) \(I = \int_S (z + 2x + \frac{4y}{3})ds \) trong đó S là mặt \(\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1 \) với \(x, y, z \geq 0 \).

b) \(I = \int_S yds \) trong đó S là mặt \(z = x + y^2 \) với \(0 \leq x \leq 1, 0 \leq y \leq 2 \).

c) \(I = \int_S (x^2 + y^2)ds \) trong đó S là mặt \(z^2 = x^2 + y^2 \) với \(0 \leq z \leq 1 \).

d) \(I = \int_S (x + y + z)ds \) với S là phần mặt \(2x + 2y + z = 2 \) nằm trong góc \(x, y, z > 0 \).

e) \(I = \int_S x\sqrt{y^2 + 1}ds \) với S là phần mặt \(y^2 + 4z = 16 \) có vị trí \(x = 0, x = 1, z = 0 \).

6. Tìm khối lượng và trọng tâm của mặt \(z = x^2 + y^2, z \leq 1 \) nếu khối lượng riêng là \(\rho(x, y, z) = z \).

7. Tính tích phân mặt loại II

a) \(I = \int_S xyz dx \) trong đó S là phía ngoài của mặt cầu \(x^2 + y^2 + z^2 = 1 \) với \(x, y, z \geq 0 \).

b) \(I = \int_S xdydz + dzdx + xz^2dxdy \) trong đó S là phía ngoài của mặt cầu \(x^2 + y^2 + z^2 = 1 \) với \(x, y, z \geq 0 \).

c) \(I = \int_S x^2dydz + y^2dzdx + z^2dxdy \) trong đó S là phía ngoài của mặt cầu \(x^2 + y^2 + z^2 = 4 \).

Tính tích phân như trong c) với S là phần mặt \(z^2 = x^2 + y^2, 0 \leq z \leq 4 \).

e) \(I = \int_S xdydz + ydzx + zdx \) với S là phía ngoài mặt paraboloid \(z = x^2 + y^2, z \leq 1 \).

f) \(I = \int_S xyzdxdz + ydzdx + dxdy \) với S là phía ngoài của chổm cầu \(x^2 + y^2 + z^2 = 25 \) có vị trí \(z = 3 \).
\[g) \quad I = \iiint_S xydz + ydzdx + zdxdy \quad \text{trong đọ S là phía ngoài của mặt cầu} \quad x^2 + y^2 + z^2 = 4. \]

\[h) \quad I = \iiint_S x^3 dydz + y^3 dzdx + z^3 dx dy \quad \text{trong đọ S là phía ngoài của mặt cầu} \quad x^2 + y^2 + z^2 = 9. \]

\[i) \quad I = \iiint_S xzdydz + yx^2 dzdx + zy^2 dxdy \quad \text{trong đọ S là phía ngoài của mặt} \quad x^2 + y^2 = 9, \quad z = 0, \quad z = 9. \]

\[k) \quad I = \iiint_S (y-z)dydz + (z-x)dzdx + (x-y)dxdy \quad \text{trong đọ S là phía ngoài của mặt} \quad x = \frac{y^2}{4} + \frac{z^2}{9}, \quad 0 \leq x \leq 1. \]

Chương 4
PHƯƠNG TRÌNH VI PHÂN

1. \(x(1+y^2)^2 dx + y(1+x^2)^2 dy = 0 \)
2. \(y' \cos 2y - \sin y = 0 \)
3. \(y' = \frac{1}{x+y} + 1 \)
4. \(y' = \cos(x-y) \)
5. \(x\sqrt{1+y^2} dx + y\sqrt{1+x^2} dy = 0, \quad y(0) = 1 \)
6. \((x^2 + 1)y' = y^2 + 4, \quad y(1) = 2 \)
7. \(y' = \frac{\sin x - \cos 2x + 2}{y^2 + 1} \)
8. \(x = y' + (y')^3 \)
9. \((y-x)dx + (x+y)dy = 0 \)
10. \(y' = 2 \left(\frac{y + 2}{x + y - 1} \right)^2 \)
11. \(y' = \frac{x - y + 1}{x + y + 3} \)
12. \(xdy - ydx = \sqrt{x^2 + y^2} dx \)
13. \(y' + 2xy = xe^{-x} \)
14. \((1+x^2)y' - 2xy = (1+x^2)^3 \)
15. \((1+x^2)y' + xy = 1, \quad y(0) = 0 \)
16. \((x + y + 1)dx + (x - y^2 + 3)dy = 0 \)
17. \(xy' + y = \frac{1}{x^2 y^2} \)
18. \(y - (y')^2 e^y = 0 \)
19. \((y')^3 + y^3 = 3yy' \)
20. \(y = x(y')^2 + (y')^3 \)
21. \(xy' = x^2 e^{-y} + 2 \)
22. \(yy' + xy = x^3 \)
23. \(x - y'' e^y + y'' = 0 \)
24. \(y'' = \frac{1}{\sqrt{y}} \)
25. $4y^{''} - 2yy^{''} - (y')^2 - 1$
26. $yy^{''} + (y')^2 - y^{2n}y = 0$
27. $yy^{''} - (y')^4 - (y')^2 = 0$
28. $(y'')^2 + 2xy^{''} - y' = 0$
29. $y^{''} + \frac{2}{x} y' + y = 0$ biệt nghiệm riêng là $y = \frac{\sin x}{x}$
30. $y^{''} - 4y' + y = x^2$
31. $y^{''} - 6y' + 8y = e^y + e^{2x}$
32. $y^{''} + 4y = x\sin 2x$
33. $y^{''} + y = \sin x$
34. $y^{''} - 2y = 4x^2e^x$
35. Lập phương trình tuyến tính thuận nhất cấp hai nhận $y_1 = x, y_2 = x^2$ làm hệ nghiệm cơ bản
36. Lập phương trình tuyến tính thuận nhất cấp hai nhận $y_1 = \sin x, y_2 = \cos x$ làm hệ nghiệm cơ bản.
37. \[
\begin{align*}
 y' &= 3y - 2z \\
 z' &= 2y - z
\end{align*}
\]
38. \[
\begin{align*}
 y' &= z + 1 \\
 z' &= y
\end{align*}
\]
39. \[
\begin{align*}
 y' &= 2y + z \\
 z' &= y + 2z
\end{align*}
\]
40. \[
\begin{align*}
 y' &= 2y - z \\
 z' &= y + 2z
\end{align*}
\]
41. \[
\begin{align*}
 y' &= y - z \\
 y' &= y + 3z
\end{align*}
\]
42. \[
\begin{align*}
 y' &= \frac{y^2}{z} \\
 z' &= \frac{y}{2}
\end{align*}
\]
43. \[
\begin{align*}
 y' &= z \\
 z' &= \frac{z^2}{y}
\end{align*}
\]
44. \[
\begin{align*}
 y' &= 2y - z + 2e^x \\
 z' &= 3y - 2z + 4e^x
\end{align*}
\]
45. \[
\begin{align*}
 y' &= y - z + x \\
 z' &= -y + 5z
\end{align*}
\]
BÀI TẬP ÔN TẬP HỌC KỲ

1. Xét tính liên tục của hàm số
 a) \(f(x, y) = \begin{cases} \frac{2x^2(x^2-2y^2)}{x^4-4y^4} & \text{khi } x^2 \neq 2y^2 \\ m & \text{khi } x^2 = 2y^2 \end{cases} \)
 b) \(f(x, y) = \begin{cases} x^2 \sin \frac{1}{x} \cos \frac{1}{2y} & \text{khi } x, y \neq 0 \\ 1 & \text{khi } x, y = 0 \end{cases} \)
 c) \(f(x, y) = \begin{cases} \sin \frac{x^2-4y^2}{x^2+y^2} & \text{khi } x^2 + y^2 \neq 0 \\ 1 & \text{khi } x^2 + y^2 = 0 \end{cases} \)
 d) \(f(x, y) = \begin{cases} \frac{x^2-y^2}{x^2+y^2+(x+2y)^2} & \text{khi } (x, y) \neq (0, 0) \\ 0 & \text{khi } (x, y) = (0, 0) \end{cases} \)
 e) \(f(x, y) = \begin{cases} (x^2+2y^2) \sin \frac{\pi}{x^2+y^2} & \text{khi } x^2 + y^2 \neq 0 \\ 0 & \text{khi } x^2 + y^2 = 0 \end{cases} \)

2. Tìm cực trị của hàm số
 a) \(u = x^4 + y^4 - 2(x-y)^2 \)
 b) \(u = \frac{x+y}{2} + \frac{z^2}{2x} + \frac{2}{y} \) \(\text{với } (x, y, z) > 0 \)
 c) \(u = x^3 + y^2 + z^2 - 3x^2 + 2y \)
 d) \(u = 3x^2y + x^3 - y^4 \)
 e) \(u = \arctan x^2 - y^2 - 2y \)
 f) \(u = x^2 + y^2 + z^2 - 2x + 4y + 6z \)

3. Tìm cực trị có điều kiện của hàm số
 a) \(u = x^2 + y^2 + z^2 \) với điều kiện \(x^2 + \frac{y^2}{4} + z^2 = 1 \)
 b) \(u(x, y, z) = x + y^2 + z \) với điều kiện \(\begin{cases} x + y = -1 \\ z + xy = 1 \end{cases} \)
 c) \(u = xy + yz \) với điều kiện \(\begin{cases} x^2 + y^2 = 4 \\ y + z = 4 \end{cases} \) \(\text{với } (x, y, z) > 0 \)
 d) \(u = 2x - y - z \) với điều kiện \(x^2 + \frac{y^2}{4} + z^2 = 9 \)

4. Tìm giá trị lớn nhất, nhỏ nhất của hàm số
 a) \(u = 2x^3 y + xy^2 - 3xy \) trong miền đóng \(0 \leq x \leq 1, 0 \leq y \leq 2 \)
5. Tính vi phân, đạo hàm theo hướng của hàm nhiều biến, đạo hàm của hàm ẩn
a) Cho z là hàm ẩn xác định bởi $z + ye^{yz} = 0$. Tính $dz(0; -1)$.

b) Cho $u = \ln\left(1 + \sqrt{x^2 + 4y^2 + 4z^2}\right)$ và diễm $A(1; 1; -1)$, $B(0; 3; 1)$. Tính đạo hàm của u tại diễm A theo hướng \overrightarrow{AB}. Tìm giá trị lớn nhất của $\left|\frac{\partial U(A)}{\partial \ell}\right|$.

c) $u = x \sin(3yz)$ Xác định $\text{Grad} \ u$ và $\frac{\partial u}{\partial \ell}$ tại $M_0(1; 1; 0)$ với $\ell = i + 2j - 2k$.

d) $z = z(x, y)$ là hàm ẩn hai biến xác định bởi hệ thức: $yz + e^z - xe^y = 0$. Tính $dz(1; 0)$. Áp dụng tính gản đúng $z(0, 95; 0, 05)$.

e) $y = y(x)$ là hàm số ẩn xác định từ biểu thức: $\frac{x^3}{27} + y^3 - xy - 1 = 0$. Tính $d^2 y$ tại điểm $x = 0$.

6. Tính tích phân bộ

a) $\iiint_V z e^{z+2y} \, dx \, dy \, dz$ với V xác định bởi $\begin{cases} x^2 + y^2 + z^2 \leq 4 \\ z \geq \sqrt{x^2 + y^2} \end{cases}$

b) $\iint_D (x + y)^2 (x - y) \, dx \, dy$ với D là miền được giới hạn bởi các đường thẳng $x + y = 1$, $x + y = 3$, $x - y = -1$, $x - y = 1$

c) $\iint_D \frac{2x}{\sqrt{4 + x^2 + y^2}} \, dx \, dy$ D là miền $x^2 + y^2 \leq 4$, $x \geq 0$, $y \geq 0$

d) $\iiint_V xyz \, dx \, dy \, dz$ với V là miền $\frac{x^2}{9} + \frac{y^2}{4} + z^2 \leq 1$

e) $\iiint_V \sqrt{x^2 + 4y^2 + 9z^2} \, dx \, dy \, dz$, trong đó V là miền $x^2 + 4y^2 + 9z^2 \leq 1$, $x, y, z \geq 0$.

f) $\iiint_V \sqrt{x^2 + y^2} \, dx \, dy \, dz$ trong đó V là miền giới hạn bởi mặt trù $x^2 + y^2 = 2x$, $0 \leq z \leq 4$.

7. Tính thể tích vật thể giới hạn bởi các mặt

a) $z = x^2 + y^2 - 1$ và $z = 3$

b) $x^2 + y^2 + z^2 = 2\sqrt{xyz}$ nằm trong góc $x, y, z \geq 0$

c) $z = x^2 + y^2$, $2y + z = 8$

d) $(x^2 + y^2 + z^2)^2 = 4z(x^2 + y^2)$ nằm trong góc $x, y, z \geq 0$

e) $2z = x^2 + y^2$, $z = 8 - x^2 - y^2$

f) $(x - 2)^2 + y^2 = 4$, $x^2 + y^2 + z^2 = 16$

g) $x^2 + y^2 = 4$ và $x^2 + z^2 = 4$

8. Tính diện tích

a) Hình phẳng giới hạn dưới đường cong $(x^2 + y^2)^2 = 2x^3$
b) Hình phẳng giới hạn bởi đường cong \(\left(\frac{x^2}{4} + \frac{y^2}{9} \right)^2 = 2xy \quad (x \geq 0, \ y \geq 0) \)

c) Hình phẳng giới hạn bởi đường cong \((x^2 + y^2)^2 = 2(x^2 - y^2) \)

d) Mặt paraboloid \(z = x^2 + y^2 \) nằm trong mặt trục \(x^2 + y^2 = 4 \)

e) Mặt cấu \(x^2 + y^2 + z^2 = 9 \) nằm trong mặt trục \(x^2 + y^2 = 3x \)

9. Tính tích phân đường, tích phân mặt

a) \(\int_{AB} (x^2 + y) \, ds \quad \) với \(\overline{AB} \) là nửa phá trên trục hoành của cung tròn \(x^2 + y^2 = 1 \)

b) \(\iiint_S (y-z) \, dydz + (z-x) \, dzdx + (x-y) \, dxdy \quad \) với \(S \) là mặt mòn \(x^2 + y^2 = z^2 \quad (0 \leq z \leq 2) \) có pháp tuyến hướng ra phía ngoài.

c) \(\iiint_S x^2 \, dydz + y^2 \, dzdx + z^2 \, dxdy \quad \) với \(S \) là mặt mòn \(x^2 + y^2 = z^2 \quad (0 \leq z \leq 1) \) có pháp tuyến hướng ra phía ngoài.

d) \(\oint_C (y-z) \, dx + (z-x) \, dy + (x-y) \, dz \quad \) trong đó \(C \) là đường \(x^2 + y^2 = 4, \ \frac{x}{2} + \frac{y}{3} = 1 \) chi tiết lấy tích phân ngược chiều kim đồng hồ nếu nhìn từ phía dưới của trục Oz.

e) \(\iiint_S x \, dydz + y \, dzdx + z \, dxdy \quad \) với \(S \) là mặt ngoài của hình tròn \(x^2 + y^2 = 4, 0 \leq z \leq 2 \) có pháp tuyến hướng ra phía ngoài.

f) \(\int_{OA} (x+1) \, e^{-y} \, dx - xe^{-y} \, dy \quad \) với \(\overline{OA} \) là cung \(x^2 + y^2 = 2x \quad (y \leq 0) \) theo chiều từ \((0,0)\) đến \((2,0)\).

g) \(\iiint_S x^3 \, y^2 + z^2 \, dydz \quad \) với \(S \) là biên của miền \(V: x^2 \geq y^2 + z^2, 0 \leq x \leq 2 \) có pháp tuyến hướng ra phía ngoài.

h) \(\int_{OA} (-x^2 - 2x + y) \, dx + (xy^2 + x - 2y) \, dy \quad \) với \(\overline{OA} \) là nửa cung tròn \(x^2 + y^2 = 2y, \ (x \geq 0) \) chiều từ \((0,0)\) đến \((2,0)\).

i) \(I = \oint_L \sqrt{x^2 + y^2} \, dx + y \left(xy + \ln(x + \sqrt{x^2 + y^2}) \right) \, dy \quad \) trong đó \(L \) là đường tròn \((x - 2)^2 + (y - 2)^2 = 4 \) lấy theo chiều đường.

j) \(\oint_C \frac{(x-y) \, dx + (x+y) \, dy}{x^2 + y^2} \quad \) với \(C \) là đường tròn bán kính \(R = 3 \) bao quanh gốc tọa độ. Trong trường hợp này có áp dụng công thức Green được không?

k) Tìm diệu kiến của \(m \) để tích phân đường \(\oint_{AB} (3x^2 + 2y^2) \, dx + (mxy + 3y^2 + 4) \, dy \) không phụ thuộc vào đường cong nối \(A(1;3) \) và \(B(2;4) \). Hãy tính tích phân đó.

10. Giải phương trình, hệ phương trình vi phân

a) \(y'' - 3y' + 2y = -4xe^x \)

b) \(y'' - 4y' + 3y = (x + 1) e^{2x} \)

c) \(y'' - 4y' + y = x^2 \)
d) \[y'' - 6y' + 8y = e^x + e^{2x} \]
e) \[y'' + 4y = x \sin 2x \]
f) \[y'' + y = \sin x \]
g) \[y'' - 2y = 4x^2 e^x \]
h) \[y'' - 5y' + 4y = e^x (x - 3) \]
i) \[y'' - y' = \frac{1}{1 + e^x} \] với \(y(0) = 1, \ y'(0) = 2 \)
j) \[y'' - 3y' + 2y = xe^{3x} \]
k) \[\begin{cases} x' = 2x + y \\
y' = -x + 2y \end{cases} \]
l) \[\begin{cases} x' = 2x + y \\
y' = x + 4y \end{cases} \]
m) \[\begin{cases} y' = 2y + z \\
z' = y + 2z \end{cases} \]

n) \[\begin{cases} y' = 2y - z \\
z' = y + 2z \end{cases} \]
o) \[\begin{cases} y' = y - z \\
z' = y + 3z \end{cases} \]
p) \[y' - \frac{1}{x} y = \ln \frac{x}{x} \]
q) \[xy' - y = x^2 \sin x \]
r) \[(1 - x^3) dx + x^2 (y - x) dy = 0 \]
s) \[(1 + x^2) y' - 2xy = (1 + x^2)^3 \]
t) \[(1 + x^2) y' + xy = 1, \ y(0) = 0 \]
u) \[(1 - x^2) dx + x^2 (y - x) dy = 0 \]
v) \[y' \left(x \sin \frac{y}{x} \right) + x = y \sin \frac{y}{x} \]
w) \[(\sin^2 y - x^2) dx - x \sin 2y dy = 0 \] bằng cách nhân thêm thừa số tích phân \(\frac{1}{x^2} \)
x) \[xy' = y + x \sin \frac{y}{x} \] với điều kiện \(y(1) = \frac{\pi}{2} \)
y) \[xy'' + 2y' - xy = e^x \] bằng phép đổi biến \(z = x, y \)
z) \[x^2 y'' + xy' + y = x \] bằng phép đổi biến \(x = e^t \)

Chúc các em ngày càng tiến bộ, học tập đạt kết quả cao!